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Monotonicity Formula
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Remark The formula holds for singular min submfd currents
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Proof L Simon Lectures on GMT CM Ch 3

W LO.G take 26 0

Recall SE X diveX o V Cpt supp vector field X inBn

Idea Choose X to be certain cutoff of radial vector field

jadialVeefield
Take X x Hr x where r Iact dist Cx o GT

e

E
Compute the divergence as

is
k R X ei ko o

divzX Teix ei T

k Hr Vcr Coe rxx.ei tired
k Tcr r Sir 1 Jr 12

I I Tr 12



Integrate over I by first variation formula
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Some consequences of Monotonicity Formula

I The volume ratio
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II The limits on both sides exist even maybe too
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Note E c to c E has Euclideanvolumegrowth

Iii The density function Xo 1 7 is upper semi continuous
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Existence Theory for Minimal Surfaces

Q How to construct minimal surfaces in IR or Mng

First look at Psn even n 3

Recall Max principle I closed opt w obdy min submfd in B

So we are interested in a

G i complete non cpt min surfaces E.g plane catenoid helicoid

2 min surfaces with boundary E.g disk

Plateau's Problem Dirichlet BVP for min surfaces
ip3

Given a simple closed Jordan curve T E IRS II
7 min surface 2 E 1123 with 22 T

Is there an area minicing I

Subtlety Depends very much on what surfaces are and

how to measure their area

Various approaches to Plateau's Problem
Dt PDE approach T E graphs Dirichlet BVP for CMSE O

2 Parametrized approach Mapping problem u D 1133 energyIgf
3 GMT approach weak surfaces eg currentsI'varifolds

4 set theoretic approach min among sets Reifenberg Gos

5 Capillarymodel for min surfaces F Maggi etal 2019 20
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For any given piecease C Jordan curve T E 1123 I
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Remark CMoney works in Riemannianmanifold

Q why is it difficult to prove a theorem like this

Direct Method Take a minimizing seq d pass to a sub seq limit

Difficulty 1
Area is a geometric notion
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No compactness Difficulty
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Key Idea Work with energy instead of area

Denote Xp I f U D 1133 satisfy 1 cz in Douglas RadoThin

For each U E Xp f parametnied disk ul bay T define
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proof we have the pointwise inequality T C
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Integrate over D we get Area u E Energy a if u E Xp

This implies AT E ET
For AT 3 ET we observe holds in C iff
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i e U is conformal

By the existence of global isothermal coordinates on CD u9
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